{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Scientist Names"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"df_raw = pd.read_json(\"https://raw.githubusercontent.com/dariusk/corpora/master/data/humans/scientists.json\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" description | \n",
" scientists | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" List of particularly famous scientists | \n",
" Aage Bohr | \n",
"
\n",
" \n",
" 1 | \n",
" List of particularly famous scientists | \n",
" Abdul Qadeer Khan | \n",
"
\n",
" \n",
" 2 | \n",
" List of particularly famous scientists | \n",
" Abu Nasr Al-Farabi | \n",
"
\n",
" \n",
" 3 | \n",
" List of particularly famous scientists | \n",
" Ada Lovelace | \n",
"
\n",
" \n",
" 4 | \n",
" List of particularly famous scientists | \n",
" Adalbert Czerny | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" description scientists\n",
"0 List of particularly famous scientists Aage Bohr\n",
"1 List of particularly famous scientists Abdul Qadeer Khan\n",
"2 List of particularly famous scientists Abu Nasr Al-Farabi\n",
"3 List of particularly famous scientists Ada Lovelace\n",
"4 List of particularly famous scientists Adalbert Czerny"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_raw.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare the dataset"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"df = df_raw[ ['scientists'] ].copy()\n",
"df['first_name'] = df.scientists.apply( lambda x: x.split(' ')[0] )\n",
"df['last_name'] = df.scientists.apply( lambda x: x.split(' ')[-1] )\n",
"df['len_diff'] = df.apply( lambda x: len(x.first_name) - len(x.last_name), axis=1 )"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" scientists | \n",
" first_name | \n",
" last_name | \n",
" len_diff | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Aage Bohr | \n",
" Aage | \n",
" Bohr | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" Abdul Qadeer Khan | \n",
" Abdul | \n",
" Khan | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" Abu Nasr Al-Farabi | \n",
" Abu | \n",
" Al-Farabi | \n",
" -6 | \n",
"
\n",
" \n",
" 3 | \n",
" Ada Lovelace | \n",
" Ada | \n",
" Lovelace | \n",
" -5 | \n",
"
\n",
" \n",
" 4 | \n",
" Adalbert Czerny | \n",
" Adalbert | \n",
" Czerny | \n",
" 2 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" scientists first_name last_name len_diff\n",
"0 Aage Bohr Aage Bohr 0\n",
"1 Abdul Qadeer Khan Abdul Khan 1\n",
"2 Abu Nasr Al-Farabi Abu Al-Farabi -6\n",
"3 Ada Lovelace Ada Lovelace -5\n",
"4 Adalbert Czerny Adalbert Czerny 2"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plots"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAFyCAYAAACjlj1QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG6BJREFUeJzt3X2wJWV9J/DvLzPISDCOyqDIaGbcYg1oKeLVlajRFQK+BUxKs1rEsOiKbkjUzVoLxCRYplKFS6LRWjcR34JKFNQY2aAraDTGlEIGHV9wcGeiE71CZEIUY1QEffaP02Ou470zZ4Z77jnPnc+n6tTtfrpP969vn577nX66T1drLQAA9OEnpl0AAADjE94AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOTCy8VdWbqurmqvrcgraLquqGqvpMVb2nqtYvmHZ+Ve2oqi9U1amTqgsAoGc1qScsVNXPJflWkre01h48tJ2S5K9aa3dU1SuSpLV2blUdl+TtSR6Z5L5JPpjk37fWvr+3dRxxxBFt06ZNE6kfAGA5XXfddf/UWttwZ5ezdjmKWUxr7aNVtWmPtqsWjH4iydOH4dOTvKO1dluSL1XVjoyC3Mf3to5NmzZly5Yty1YzAMCkVNU/LMdypnnN23OSvH8YPjrJVxZMmx/afkxVnV1VW6pqy65duyZcIgDAbJlKeKuqlya5I8mlu5sWmW3R/tzW2sWttbnW2tyGDXf6zCMAQFcm1m26lKo6M8lTk5zU/u2Cu/kk91sw28YkN650bQAAs25Fw1tVPTHJuUke11r79oJJVyT5s6p6ZUY3LByT5NqVrA0AGM/tt9+e+fn5fPe73512KTNp3bp12bhxYw455JCJLH9i4a2q3p7k8UmOqKr5JBckOT/JoUmurqok+URr7QWtteur6vIkn8+oO/Wcfd1pCgBMx/z8fO52t7tl06ZNGf6eM2it5ZZbbsn8/Hw2b948kXVM8m7TZy3S/Ma9zP/7SX5/UvUAAMvju9/9ruC2hKrKve51r0zypkpPWAAA9pvgtrRJ/26ENwCAjqz43aYAwOqy6bwrl3V5Oy98yrIub7Vx5g0A6M7hhx8+sWXv3LkzD37wg5MkW7ZsyQtf+MIkyW233ZaTTz45xx9/fC677LL8zd/8TR70oAfl+OOPz3e+852J1bMnZ94AAJYwNzeXubm5JMmnPvWp3H777dm6dWuS5AUveEFe8pKX5KyzzlrRmpx5AwC6dtFFF+URj3hEHvKQh+SCCy5IMjp7duyxx+Z5z3teHvSgB+WUU07Z69mx6667Lg996ENz4okn5rWvfe0P2z/ykY/kqU99am6++eb8yq/8SrZu3Zrjjz8+r3vd63L55Zfn5S9/ec4444yJb+NCwhsA0K2rrroq27dvz7XXXputW7fmuuuuy0c/+tEkyfbt23POOefk+uuvz/r16/Pud797yeWcddZZec1rXpOPf/zji04/8sgj84Y3vCGPfexjs3Xr1jz/+c/PaaedlosuuiiXXnrpou+ZFOENAOjWVVddlauuuioPe9jDcsIJJ+SGG27I9u3bkySbN2/O8ccfnyR5+MMfnp07dy66jFtvvTXf+MY38rjHPS5J8uxnP3tFaj9QrnkD2MNy3zk3Te7aY7VrreX888/P85///B9p37lzZw499NAfjq9Zs2bJbtPWWlffWye8AQB3yjT/k3Dqqafmd37nd3LGGWfk8MMPz1e/+tX9fqbo+vXrc/e73z0f+9jH8pjHPGbFu0H3l/AGAHTrlFNOybZt23LiiScmGX2FyNve9rasWbNmv5bz5je/Oc95znNy2GGH5dRTT51EqcumWmvTruGAzc3NtS1btky7DGCV0W0Ke7dt27Yce+yx0y5jpi32O6qq61prc3d22W5YAADoiG5TAOCgcc455+Rv//Zvf6TtRS960Yp/0e6dIbwBAPuttzs0d1v4BbyTMulL0nSbAgD7Zd26dbnlllsmHlJ61FrLLbfcknXr1k1sHc68AQD7ZePGjZmfn8+uXbumXcpMWrduXTZu3Dix5QtvAMB+OeSQQ7J58+Zpl3HQ0m0KANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOTCy8VdWbqurmqvrcgrZ7VtXVVbV9+HmPob2q6jVVtaOqPlNVJ0yqLgCAnk3yzNufJnniHm3nJflQa+2YJB8axpPkSUmOGV5nJ/njCdYFANCtiYW31tpHk/zzHs2nJ7lkGL4kydMWtL+ljXwiyfqqOmpStQEA9Gqlr3m7d2vtpiQZfh45tB+d5CsL5psf2gAAWGBWblioRdraojNWnV1VW6pqy65duyZcFgDAbFnp8Pa13d2hw8+bh/b5JPdbMN/GJDcutoDW2sWttbnW2tyGDRsmWiwAwKxZ6fB2RZIzh+Ezk7x3QfuvDnedPirJrbu7VwEA+DdrJ7Xgqnp7kscnOaKq5pNckOTCJJdX1XOTfDnJM4bZ35fkyUl2JPl2krMmVRcAQM8mFt5aa89aYtJJi8zbkpwzqVoAAFaLWblhAQCAMQhvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjUwlvVfXfqur6qvpcVb29qtZV1eaquqaqtlfVZVV1l2nUBgAwy1Y8vFXV0UlemGSutfbgJGuSPDPJK5K8qrV2TJKvJ3nuStcGADDrptVtujbJXatqbZLDktyU5AlJ3jVMvyTJ06ZUGwDAzFrx8NZa+2qSP0jy5YxC261JrkvyjdbaHcNs80mOXuz9VXV2VW2pqi27du1aiZIBAGbGNLpN75Hk9CSbk9w3yU8medIis7bF3t9au7i1Ntdam9uwYcPkCgUAmEHT6DY9OcmXWmu7Wmu3J/nzJD+bZP3QjZokG5PcOIXaAABm2jTC25eTPKqqDquqSnJSks8n+XCSpw/znJnkvVOoDQBgpk3jmrdrMrox4ZNJPjvUcHGSc5P8ZlXtSHKvJG9c6doAAGbd2n3PsvxaaxckuWCP5i8meeQUygEA6IYnLAAAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6snbaBQAwOZvOu3LaJSybnRc+ZdolwExw5g0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOuJuU2BZrKa7GgFmmTNvAAAdEd4AADoyVnirqgdPuhAAAPZt3DNvf1JV11bVr1XV+olWBADAksYKb621xyQ5I8n9kmypqj+rqp+faGUAAPyYsa95a61tT/LbSc5N8rgkr6mqG6rqlyZVHAAAP2rca94eUlWvSrItyROS/EJr7dhh+FUTrA8AgAXG/Z63/5Xk9Ul+q7X2nd2NrbUbq+q3J1IZAAA/Ztzw9uQk32mtfT9JquonkqxrrX27tfbWiVUHAMCPGPeatw8mueuC8cOGNgAAVtC44W1da+1bu0eG4cMmUxIAAEsZN7z9a1WdsHukqh6e5Dt7mR8AgAkY95q3Fyd5Z1XdOIwfleQ/TaYkAACWMlZ4a639XVX9TJIHJqkkN7TWbp9oZQAA/Jhxz7wlySOSbBre87CqSmvtLROpCgCARY0V3qrqrUn+XZKtSb4/NLckwhsAwAoa98zbXJLjWmttksUAALB3495t+rkk95lkIQAA7Nu4Z96OSPL5qro2yW27G1trp02kKgAAFjVueHvZJIsAAGA8435VyF9X1U8nOaa19sGqOizJmsmWBgDAnsa65q2qnpfkXUleNzQdneQvJlUUAACLG/eGhXOSPDrJN5OktbY9yZGTKgoAgMWNG95ua619b/dIVa3N6HveAABYQeOGt7+uqt9Kcteq+vkk70zyfw50pVW1vqreVVU3VNW2qjqxqu5ZVVdX1fbh5z0OdPkAAKvVuOHtvCS7knw2yfOTvC/Jb9+J9b46yf9trf1Mkocm2Tas40OttWOSfGgYBwBggXHvNv1BktcPrzulqn4qyc8l+c/Dsr+X5HtVdXqSxw+zXZLkI0nOvbPrAwBYTcZ9tumXssg1bq21BxzAOh+Q0Vm8N1fVQ5Ncl+RFSe7dWrtpWO5NVbXoDRFVdXaSs5Pk/ve//wGsHgCgX/vzbNPd1iV5RpJ73ol1npDkN1pr11TVq7MfXaSttYuTXJwkc3NzbpoAAA4qY13z1lq7ZcHrq621P0ryhANc53yS+dbaNcP4uzIKc1+rqqOSZPh58wEuHwBg1Rq32/SEBaM/kdGZuLsdyApba/9YVV+pqge21r6Q5KQknx9eZya5cPj53gNZPgDAajZut+kfLhi+I8nOJL98J9b7G0kuraq7JPlikrMyCoWXV9Vzk3w5o65ZAAAWGPdu0/+4nCttrW3Nj15Ht9tJy7keAIDVZtxu09/c2/TW2iuXpxwAAPZmf+42fUSSK4bxX0jy0SRfmURRAAAsbtzwdkSSE1pr/5IkVfWyJO9srf2XSRUGAMCPG/fxWPdP8r0F499LsmnZqwEAYK/GPfP21iTXVtV7MnrSwi8mecvEqgIAYFHj3m36+1X1/iSPHZrOaq19anJlAQCwmHG7TZPksCTfbK29Osl8VW2eUE0AACxhrPBWVRckOTfJ+UPTIUneNqmiAABY3Lhn3n4xyWlJ/jVJWms35gAfjwUAwIEbN7x9r7XWMrpZIVX1k5MrCQCApYwb3i6vqtclWV9Vz0vywSSvn1xZAAAsZty7Tf+gqn4+yTeTPDDJ77bWrp5oZQAA/Jh9hreqWpPkA621k5MIbAAAU7TPbtPW2veTfLuq7r4C9QAAsBfjPmHhu0k+W1VXZ7jjNElaay+cSFUAACxq3PB25fACAGCK9hrequr+rbUvt9YuWamCAABY2r6uefuL3QNV9e4J1wIAwD7sK7zVguEHTLIQAAD2bV/hrS0xDADAFOzrhoWHVtU3MzoDd9dhOMN4a6391ESrAwDgR+w1vLXW1qxUIQAA7Nu4zzYFAGAGCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR6YW3qpqTVV9qqr+chjfXFXXVNX2qrqsqu4yrdoAAGbVNM+8vSjJtgXjr0jyqtbaMUm+nuS5U6kKAGCGTSW8VdXGJE9J8oZhvJI8Icm7hlkuSfK0adQGADDLpnXm7Y+S/I8kPxjG75XkG621O4bx+SRHT6MwAIBZtuLhraqemuTm1tp1C5sXmbUt8f6zq2pLVW3ZtWvXRGoEAJhV0zjz9ugkp1XVziTvyKi79I+SrK+qtcM8G5PcuNibW2sXt9bmWmtzGzZsWIl6AQBmxoqHt9ba+a21ja21TUmemeSvWmtnJPlwkqcPs52Z5L0rXRsAwKybpe95OzfJb1bVjoyugXvjlOsBAJg5a/c9y+S01j6S5CPD8BeTPHKa9QAAzLpZOvMGAMA+CG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0ZO20C4CD3abzrpx2CQB0xJk3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdWbvSK6yq+yV5S5L7JPlBkotba6+uqnsmuSzJpiQ7k/xya+3rK10fALNp03lXTruEZbHzwqdMuwQ6N40zb3ck+e+ttWOTPCrJOVV1XJLzknyotXZMkg8N4wAALLDi4a21dlNr7ZPD8L8k2Zbk6CSnJ7lkmO2SJE9b6doAAGbdVK95q6pNSR6W5Jok926t3ZSMAl6SI5d4z9lVtaWqtuzatWulSgUAmAlTC29VdXiSdyd5cWvtm+O+r7V2cWttrrU2t2HDhskVCAAwg6YS3qrqkIyC26WttT8fmr9WVUcN049KcvM0agMAmGUrHt6qqpK8Mcm21torF0y6IsmZw/CZSd670rUBAMy6Ff+qkCSPTvLsJJ+tqq1D228luTDJ5VX13CRfTvKMKdQGADDTVjy8tdY+lqSWmHzSStYCANAbT1gAAOiI8AYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdER4AwDoiPAGANAR4Q0AoCPCGwBAR4Q3AICOCG8AAB0R3gAAOiK8AQB0RHgDAOjI2mkXAAAHk03nXTntEpbNzgufMu0SDkrOvAEAdER4AwDoiG5TurSauh0AYH848wYA0BHhDQCgI8IbAEBHhDcAgI4IbwAAHRHeAAA6IrwBAHREeAMA6IjwBgDQEeENAKAjwhsAQEeENwCAjghvAAAdEd4AADoivAEAdGTttAtg5Ww678pplwDAKrKa/q7svPAp0y5hbM68AQB0RHgDAOjIzHWbVtUTk7w6yZokb2itXTjlklbVaWEAoG8zdeatqtYkeW2SJyU5Lsmzquq46VYFADA7Ziq8JXlkkh2ttS+21r6X5B1JTp9yTQAAM2PWuk2PTvKVBePzSf7Dwhmq6uwkZw+j36qqL6xQbZN2RJJ/mnYRU3Iwb3tycG//wbztycG9/bb94DWT21+vWJHVPHA5FjJr4a0WaWs/MtLaxUkuXplyVk5VbWmtzU27jmk4mLc9Obi3/2De9uTg3n7bfnBue3Jwb39VbVmO5cxat+l8kvstGN+Y5MYp1QIAMHNmLbz9XZJjqmpzVd0lyTOTXDHlmgAAZsZMdZu21u6oql9P8oGMvirkTa2166dc1kpZdV3B++Fg3vbk4N7+g3nbk4N7+237wetg3v5l2fZqre17LgAAZsKsdZsCALAXwhsAQEeEtxVUVc+oquur6gdVNbfHtPOrakdVfaGqTl3i/Zur6pqq2l5Vlw03dXRnqH3r8NpZVVuXmG9nVX12mG9Zbq+eBVX1sqr66oLfwZOXmO+Jw+dhR1Wdt9J1TkJVXVRVN1TVZ6rqPVW1fon5Vs2+39d+rKpDh2Nix3B8b1r5Kiejqu5XVR+uqm3Dv30vWmSex1fVrQuOh9+dRq2TsK/PcY28Ztj3n6mqE6ZR5yRU1QMX7NOtVfXNqnrxHvOsmn1fVW+qqpur6nML2u5ZVVcPf7Ovrqp7LPHeM4d5tlfVmWOtsLXmtUKvJMdm9AV9H0kyt6D9uCSfTnJoks1J/j7JmkXef3mSZw7Df5Lkv057m5bhd/KHSX53iWk7kxwx7RonsM0vS/KSfcyzZvgcPCDJXYbPx3HTrn0Ztv2UJGuH4VckecVq3vfj7Mckv5bkT4bhZya5bNp1L+P2H5XkhGH4bkn+3yLb//gkfzntWie0/Xv9HCd5cpL3Z/Qdp49Kcs20a57Q72FNkn9M8tOrdd8n+bkkJyT53IK2/5nkvGH4vMX+vUtyzyRfHH7eYxi+x77W58zbCmqtbWutLfZEiNOTvKO1dltr7UtJdmT0qLAfqqpK8oQk7xqaLknytEnWO2nDNv1ykrdPu5YZtCofFddau6q1dscw+omMvstxNRtnP56e0fGcjI7vk4Zjo3uttZtaa58chv8lybaMnqTDyOlJ3tJGPpFkfVUdNe2iJuCkJH/fWvuHaRcyKa21jyb55z2aFx7bS/3NPjXJ1a21f26tfT3J1UmeuK/1CW+zYbHHgu35D9y9knxjwR++xebpzWOTfK21tn2J6S3JVVV13fBYtNXk14dukjctcSp9nM9E756T0VmHxayWfT/OfvzhPMPxfWtGx/uqMnQHPyzJNYtMPrGqPl1V76+qB61oYZO1r8/xwXCcJ6Mzykv9J3217vskuXdr7aZk9B+ZJEcuMs8BfQZm6nveVoOq+mCS+ywy6aWttfcu9bZF2vb8Dpdx5pkZY/4enpW9n3V7dGvtxqo6MsnVVXXD8L+bmbe37U/yx0l+L6P993sZdR0/Z89FLPLemd3fC42z76vqpUnuSHLpEovpdt/vYdUd2weiqg5P8u4kL26tfXOPyZ/MqDvtW8P1n3+R5JiVrnFC9vU5Phj2/V2SnJbk/EUmr+Z9P64D+gwIb8ustXbyAbxtnMeC/VNGp9TXDv87n+lHh+3r91BVa5P8UpKH72UZNw4/b66q92TUBdXFH/BxPwdV9fokf7nIpG4fFTfGvj8zyVOTnNSGiz4WWUa3+34P4+zH3fPMD8fF3fPj3S/dqqpDMgpul7bW/nzP6QvDXGvtfVX1v6vqiNbazD24fH+N8Tnu9jjfD09K8snW2tf2nLCa9/3ga1V1VGvtpqE7/OZF5pnP6Nq/3TZmdF38Xuk2nQ1XJHnmcNfZ5oz+53HtwhmGP3IfTvL0oenMJEudyevByUluaK3NLzaxqn6yqu62ezijC90/t9i8vdnjmpZfzOLbtSofFVdVT0xybpLTWmvfXmKe1bTvx9mPV2R0PCej4/uvlgq1vRmu3Xtjkm2ttVcuMc99dl/jV1WPzOjv0i0rV+VkjPk5viLJrw53nT4qya27u9lWkSV7WFbrvl9g4bG91N/sDyQ5paruMVxCc8rQtnfTvkPjYHpl9Id6PsltSb6W5AMLpr00o7vSvpDkSQva35fkvsPwAzIKdTuSvDPJodPepjvxu/jTJC/Yo+2+Sd63YFs/Pbyuz6jLbep1L9O2vzXJZ5N8Zji4j9pz+4fxJ2d0d97fr5btHz67X0mydXjtvsty1e77xfZjkpdnFGCTZN1wPO8Yju8HTLvmZdz2x2TUBfSZBfv8yUlesPv4T/Lrw37+dEY3sfzstOtepm1f9HO8x7ZXktcOn43PZsG3EKyGV5LDMgpjd1/Qtir3fUYB9aYktw9/55+b0bWrH0qyffh5z2HeuSRvWPDe5wzH/44kZ42zPo/HAgDoiG5TAICOCG8AAB0R3gAAOiK8AQB0RHgDAOiI8AYA0BHhDQCgI/8fo3X5rgd9+VAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots( figsize=(10,6.18) )\n",
"df.plot.hist(ax=ax)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "1a1af0ee75eeea9e2e1ee996c87e7a2b11a0bebd85af04bb136d915cefc0abce"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}