20. Ocean Freight Infra#

https://ec.europa.eu/eurostat/databrowser/view/mar_go_aa/default/table?lang=en

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns;sns.set()
df = pd.read_csv("assets/ocean-freight-infra/mar_go_aa.tsv", sep="\t", na_values=": ")
df.columns
Index(['direct,unit,rep_mar\time', '2019 ', '2018 ', '2017 ', '2016 ', '2015 ',
       '2014 ', '2013 ', '2012 ', '2011 ', '2010 ', '2009 ', '2008 ', '2007 ',
       '2006 ', '2005 ', '2004 ', '2003 ', '2002 ', '2001 ', '2000 ', '1999 ',
       '1998 ', '1997 '],
      dtype='object')
df["port"] = df["direct,unit,rep_mar\\time"].apply(lambda x: x.split(",")[-1])
df[["port", "2019 "]].loc[
    (
        df.port.apply(lambda x: len(x) > 2)
    ) & (
        df["2019 "] >0
    )
].dropna()
port 2019
4 BE_0BEANR 108697.0
6 BE_0BEGNE 25665.0
9 BE_0BEOST 1422.0
10 BE_0BEZEE 16083.0
12 BG_0BGBOJ 10622.0
... ... ...
5066 UK_1GBWIC 29.0
5067 UK_1GBWIS 106.0
5068 UK_1GBWOR 319.0
5069 UK_1GBWPT 3321.0
5071 UK_1GBWTS 63.0

2397 rows × 2 columns